

Mol碳硫分析仪对水泥中碳、硫含量的测定

概述

水泥是建筑行业的基础材料,作为混凝土的粘合剂,用于建造道路、桥梁、建筑物和水坝等各种建筑。水泥中碳和硫元素的分析非常重要,因为这会影响最终混凝土产品的水化过程、凝固时间和耐久性。

水泥主要由石灰石、粘土等材料经高温形成熟料,

然后将熟料磨成细粉并与添加剂混合制成的成品。最常见的水泥类型是硅酸盐水泥(Portland cement),它包括几种基于所用特定添加剂的变体,例如矿渣、粉煤灰或硅灰,这些添加剂可以增强某些物理性能。水泥主要用于制造混凝土和砂浆。混凝土是水泥、水、沙子和砾石等骨料的混合物,用于建造建筑物和基础设施的结构元素。砂浆是水泥和沙子的混合物,用于粘合砖块或石头。水泥还用于制造瓷砖、管道和其他需要水泥粘合部件或填补缝隙的建筑材料。

水泥的历史可以追溯到罗马人,他们开发了一种类似于现代水泥的材料用于建筑项目。然而,英国人约瑟夫·阿斯普丁(Joseph Asptin)于 1824 年发明了硅酸盐水泥,这是当今最常用的水泥类型。这个发明是一项关键的进步,由于其与以前的材料相比具有更高的强度和更短的凝固时间,极大地改变了建筑实践。

水泥的类型决定了其对不同环境条件和建筑类型的适用性:

普通硅酸盐水泥 (OPC): 最广泛使用的类型,适用于不需要特殊性能的一般建筑。

白色硅酸盐水泥: 用于装饰工程和建筑用途,与颜料结合时能够产生色彩鲜艳的混凝土。

抗硫酸盐水泥 (SRC): 用于暴露于含有高浓度硫酸盐的土壤或水中的结构。

高铝水泥: 用于需要早期高强度的地方,或在达到极端温度的环境中。

水泥中碳和硫的主要来源是制造过程中受到的污染或所用的原材料。碳以杂质中的有机碳或石灰石中碳酸盐的形式存在。当碳酸盐用于制造水泥时,它们会分解成二氧化碳,这会影响工厂的能源效率和排放。水泥中的硫通常存在于硫酸盐等原材料中,会干扰水泥凝固和硬化的水化反应,高硫含量可能会导致强度降低并延长凝固时间。为了确保水泥质量并满足环境标准,详细研究水泥的硫和碳含量至关重要。

本文采用德国莫尔(Mol)公司的 CS1000 碳硫分析仪对水泥中的碳、硫含量进行测定。

仪器介绍

对水泥的分析,Mol CS1000 碳硫分析仪使用 Premier 1350 高温燃烧炉。称量 500 mg 样品粉末到陶瓷样品舟中,使用样品导入杆推入高温燃烧炉的燃烧区,燃烧炉内的限位器确保样品始终位于燃烧区的同一位置。在氧气流中,样品被完全燃烧,产生的气体从粉尘中释放出来,通过高氯酸镁柱干燥,然后在非色散红外检测器 Mol NDIR-ORU (非色散红外光学读取单元) 中检测。EFC (全电子流量控制)确保载气通过检测器的流量恒定。

燃烧温度不足会影响硫的测量精度:最低炉温要求为 1250℃,某些样品甚至可能需要高达 1450℃才能进行精确分析。合格的高温炉必须能够提供超过 1400℃ 的温度,理想情况下可达 1500℃,以确保硫酸盐的完全分解,否则会导致错误的低硫读数。Premier 1350高温燃烧炉可以轻松达到 1550℃ 的温度,从而为对不同样品成分进行全面的硫分析提供必要的温度范围。

实验方法

分析原理: 水泥在高温氧气流中燃烧,完全氧化成二氧化碳 (CO₂) 和二氧化硫 (SO₂),这种分解需要精确控制燃烧条件,然后使用非色散红外检测器 (NDIR) 测量 CO₂ 和 SO₂。

样品类型:水泥。

样品制备:本样品未经干燥处理,直接测量,燃烧炉侧方的除水阱可确保去除任何游离水分。如有必要,样品需要在 105℃干燥至恒重,以确保后续分析结果可靠且可重复。

参数设置:

参数	设置
最长分析时间 (s)	400
最短分析时间 (s)	45
燃烧炉温度 (℃)	>1250
持续时间 (s)	60

分析结果

序号	碳含量 (%)	硫含量 (%)	样品重量 (mg)	分析时间 (s)
1	1.1339	0.4991	503.3	242

2	1.1135	0.5172	504.3	259
3	1.1424	0.5220	500.5	254
4	1.1675	0.5110	499.8	248
5	1.1117	0.5083	504.1	262
6	1.0924	0.4927	498.3	252
7	1.1379	0.4986	503.9	268
8	1.1206	0.5079	501.9	266
平均值	1.12751	0.50711		
绝对偏差	0.02297	0.00989		
相对偏差	2.03710 %	1.94998 %		

结论

为了准确分析水泥中的总碳和硫含量,Mol CS1000 碳硫分析仪与 Premier 1350 高温燃烧炉的组合非常有效。建议样品重量约为 300-500 mg,炉温保持在 1250℃ 以上。炉体侧面加装的除水阱必不可少,因为它可以直接去除炉出口处的水分,防止二氧化硫残留并确保结果的重复性。

高氯酸镁除水阱以及所用石英棉的质量和状态也至关重要,劣质材料或维护不及时会导致吸收过多的水分或二氧化硫,使得硫测量结果可能不准确。

